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Convergence Rates for Regularized Solutions 

By Mark A. Lukas 

Abstract. Given a first-kind integral equation 

1l 
Xu(x) = K(x, t)u(t) dt = f (x) 

with discrete noisy data di = f (xi) + ei, i = 1, 2,... , n, let UnaU be the minimizer in a 
Hilbert space W of the regularization functional (1/n) Z(Xu(xi) - di)2 + aIIuI12 . It 
is shown that in any one of a wide class of norms, which includes 11w, if a - 0 in a 
certain way as n -* oo, then Unak converges to the true solution uo. Convergence rates 
are obtained and are used to estimate the optimal regularization parameter a. 

1. Introduction. Consider the Fredholm integral equation of the first kind, 

K(x, t)u(t) dt = f (x), x E [0, 1], 

where f is given only as discrete noisy data 

di = f (xi) + Ei, i = 1, 2.... I ,n. 

The errors Ei are assumed to be uncorrelated random variables, each with mean 0 
and variance a2 

For an approximate solution to this ill-posed problem, we use the following form 
of regularization: 

n 

(1.1) minimize-E( u(xi)-di)2 +allIuIW. 

Here, a > 0 is called the regularization parameter and g is the integral operator 
defined by 

Xu(x) = 1 K(x, t)u(t) dt. 

The space W is either L2 [0, 1] or a reproducing kernel Hilbert space (RKHS) of 
functions on [0, 1], i.e., a Hilbert space with the property that all the evaluation 
functionals W -* R, u -* u(x), x E [0, 1], are bounded. Their representer R(x, t) 
is called the reproducing kernel (RK) of W and satisfies Rx = R(x, ) E W and 
(Rx, u)w = u(x) for all x E [0, 1] and u E W. It is not hard to show that the RK 
R(x, t) is unique and symmetric. For examples and properties of these spaces, see 

[1] and [9]. 
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For the purpose of regularization, the best examples of RKHS are the Sobolev 
spaces of order m = 1, 2,..., Wmi2 [0, 1] = {u: U(m-1) is absolutely continuous and 
u(m) E L2[0, 1]}, with inner product and norm given by 

(U V)Wm,2 = -w(UV) + (U(M),IV(M)), -)'> 0, 

IIUI12m.,2 = ,IIU112 + 1lUm112, 

or perhaps with other equivalent norms. Here and throughout, I I and (,.) denote 
the L2 [0, 1]-norm and inner product. Also useful are closed subspaces of Wm,2 such 
as 

W = {u E W22[0, 1]: u(0) = u(1) = 0} 

with 
(UV)W = (u",v"), I IIuII = I1u"112. 

For the reproducing kernels of these spaces, see [16] and [20]. 
To derive a solution to (1.1), we require that for each x E [0,1] the linear func- 

tional W -- R, u - %u(x) is bounded. With W = L2[0, 1], this is true if for 
each x, IIK(x, )II < oo. If W is a RKHS, it will be true if, for example, R(t, t) is a 
bounded function (certainly the case if W = Wm,2 [0, 1]) and for each x, K(x, ) is 
integrable. This follows since for all u E W, 

Iu(t)l = l(Rt,u)wl < (RtRt)121uIIIw = R(t, t)11211u11wI 

and 'then 

lu(x) I = jK(x, t)u(t) dt 

1 

< sup R (t, t) 112 /JK(x, t) I dtl Jul Jw. 
tO 

We will assume that for each x E [0,1], IIK(x, )II < 00, and that K(x, t) E L2[0, 1] x 
[0, 1]. This covers both cases above and also implies that %: L2 [0, 1] -* L2 [0, 1] is 
bounded. 

Although integral equations of the first kind are the main application, the results 
of this paper are not restricted to these. In fact, they will apply to any operator 
equation %u = f such that the functionals W -* R, u -* %u(x) are bounded. 

Let qh be the representer of the functional u -* %u(x) so that for all u E W, 
( ur, U)w = Xu(x). If W = L2[0, 1], then clearly r,,(t) = K(x, t). If W is a RKHS, 
then substituting u = Rt gives 

,q (t) = (r, Rt ) = 5Rt (x) = 3 KX(t), 

where M is the integral operator with kernel R(t, s). 
Now the regularization problem (1.1) is known (see [21]) to have the unique 

solution, called the regularized solution, 

(1.2) Una = r1(Qn + crnr)l1d. 

Here rn (t) = nh, (t) and Qn is the n x n matrix with entries 

[Qn]ij = (qix r3j)W = Xr7j(xi) = Q(xi, xj), 
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where Q(x, y) is the symmetric kernel 

Q(xy) = (rlx,r7y)W 

J KK* (x, y) = f K(x, t)K(y, t) dt, W = L2 [0,1] 
=4 ? 1 Wa RKHS. 

KRK* (x, y) = f j K(x, t)R(t, s)K(y, s) ds dt, 

From (1.2), note that 

(1.3) Xuff = Q(Qn+ cnI)-1d, 

where 

Qi () = Q(xi x). 

If f E X(W), let cXTf be the solution to Ju = f of minimal W norm. Equiv- 
alently, ltXf is the unique solution to 7u = f which is orthogonal in W to the 
null space N(X). Given any u E W, there exist unique elements uo E N(5(X) and 
u1 E N(X)' such that u = uo + ul. Substituting u = uo + ul into the regulariza- 
tion functional (1.1) shows that for a minimum we must have uo = 0. Thus, for all 
n and a, una E N(X)'. Since N(X)' is closed in W, if una converges in W to 
some solution of Xu = f, then that solution must be Xtf. 

By considering (1.1), it is intuitively clear that if Oa is held fixed while n 
x, then the term oIJlul 12 will prevent una from converging to XTf. To achieve 
convergence, the regularization parameter Oa = ax(n) must tend to 0 but, as we 
will see, it must not go to 0 too quickly. In this paper we show, under certain 
assumptions, that in any one of a wide class of norms, una converges to X(1 for a 
specific range of Oa = oa(n) -O 0, and we also determine the convergence rates. We 
now proceed to define these norms. 

Assume that the kernel Q(x, y) is continuous on [0, 1] x [0, 1] and define d: L2 [0,1] 
L2[0, 1] by 

of (x) = Q(x, y)f(y) dy. 

Then clearly d' is bounded, selfadjoint and positive, i.e., for all f E L2[0,1], 
(d'f, f) > O. To see the latter, note that for any ci E R and points ti E [0,1], 

m m 2 

(1.4) E ciQ(tj, tj)c3 = C0rtj, > 0. 
ij= 1 i=1 W 

In particular, if f E C[O, 1], then for any Riemann sum 
m 

(ef, f) = lim E f(ti)Q(ti, ti)f (tj)zAti\tj > 0. 
i,j=l 

Since CI0,1] is dense in L2[0,1] and a is bounded, the inequality is true for all 
f E L2 [0O 1]. 

Since Q(x, y) E L2 [0, 1] x [0, 1], a is Hilbert-Schmidt and the theory for these op- 
erators (see [14]) yields the following. Other than a possible 0 eigenvalue and corre- 
sponding null space, d' has a (possibly finite) nonincreasing sequence of eigenvalues 
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Ai > 0 (repeated according to their multiplicity) and corresponding orthonormal 

eigenfunctions qi. These form a complete system in N(d)' C L2[0, 1], and for any 

f E L2[0, 1] 
00 

Sf=EAi Yl Oi) Oi 
i=l 

where the sum converges in L2 [0, 1]. Furthermore, since Q(x, y) is continuous, Oi E 

C[0, 1] and, by Mercer's Theorem, Q(x, y) has the uniformly convergent expansion 

00 

Q(x,y) = ZAii(x)Wi(y) 
i=l 

and 

jQ(x,x)dx = Ai 
O ~~~i=l 

Thus, a is a trace class operator and it has a unique positive square root given by 

00 

dp/2f = A1l/2 (fX i 
i=l 

Henceforth, we will assume that the nonzero eigenvalues Ai of a decay like 

0 < a, i-2p < A, -< a2 i-2p, i = 1, 2, .. . 

for some p > 1/2. 
Since Q(x, y) satisfies (1.4), there exists (see [1]) a unique RKHS H with RK 

Q(x, y). Because Q(x, y) is continuous on [0, 1] x [0, 1], it is not hard to show (see 

[20]) that H C C[O, 1]. In fact, from [10], H can be described as 

00 

H = 1/2 (L2 [0, 1]) f E N(i)c o} L2 [0, 1]: (f, 0i)2//i < x 

with inner product 
00 

(f)H = (d' 1/2tfdpl/2t g) = E (f,q i) (g, Oi) /Ai, 
i=l 

and also as 
H = J(W) 

with inner product 

(fig)H = (XtfiZt9)W 

The latter implies that X: N(X)' C W -* H is an isometric isomorphism. 
Now for , > 0, define 

00 

Ht= /2(L2 [0, 1]) = { fe N(a)' C L2[0, 1]: Zf, )2/A L < o} 

Then, with the inner product 
00 

(f,9)H, = ,(f,q0i)(0,gli)/AI, 
i=l1 
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H,, is a Hilbert space. The collection of H,, p > 0, is called a scale of Hilbert 
spaces (see [17, p. 335]). For example, if the eigenfunctions Xi are trigonometric 
and N(d) = 0, then 

00 

Hi= f e L2[0, 1]: E IhI 2j2pi < 5} 
j=-00 

where fj is the jth Fourier coefficient of f. But this is simply the periodic Sobolev 
space with fractional order of smoothness pps. 

Define W,, to be the Hilbert space completion of 

{u E N(X)' C W: fu E HJ 

under the inner product 

(U.V)W, 
= 

(5U,XV)H,. 

Note that %: WI, -* Hy, is an isometric isomorphism. When it is clear from the 
function, we will write simply IIfI I for IIfIIHA if f E H,,, and IIuI I for IIuIIwH if 

U E W,1. 

Note that H1 = H and W1 = N(X)l C W. In addition, Ho = N(d)' C 
L2[0,1] and Wo is even larger. In fact, L2 [0,1] is continuously imbedded in Wo, 
since for all u E L2[0, 1], 

IIUIIWo = II|UIIHo = IIPXuII < IkU|II < ?II'II lUll. 

Here, P is the orthogonal projection of L2 [0, 1] onto N(d) '. 
With ,u as the index, the spaces H,, and W,, are ordered according to the strength 

of their norms the larger is pu the stronger is the norm. For if v < pu, then 

I2fIK E _f___ = E A I "A"0 < max{A 1'}I1fII2 

and hence H. c H. with continuous imbedding. This is a strict inclusion, since 
the function f E L2[O,1] with (f, 0q)2 = Ai1- belongs in H, but not in Ho. 
Furthermore, if v < t' then H, is dense in H.. This follows since, if f E H. and 
E > 0, then there exists fN = ENZ1(f,0i)0i E H, such that IIf - fNII, <e. 

Given f E H,,, let Xtf E W, denote the unique solution in W, to 5u = f. 
Note that when t' = 1, Xtf is simply the solution to 5u = f in N(X)' C W. 
Now if un, E W., our problem is to estimate the expected squared error 

(1.5) EIIuna - W = EII|XUna-f - H 

This can be decomposed into the squared bias 

(1.6) IIEuna - W = IIEXUna - HfA1 

and the variance 

(1.7) EII Una - EUnaII, = El IXUna - EXUna 112 
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as follows: 

El JXUno-f 
_ | H12 E l JEXUna f + XUnoe EXUnoe lIH 

= E(EXuna - if, Efuna - f)Hp 

(1.8) + 2E(EXunoe. - f Uno-EXUna) H. 
+ E(XUnoe - EXU - a una EXUna) H.. 

- IIEXUnoe 
_ fI + EI [XUnaoEXUna - 

12 

since from (1.3), for any g E Hit 
n 

E(gXJUnoa-EXUno)H, = E (g,Q(Xi, ))H,1(Qn + anI)i-E(dj-f(xj)) 
ij=1 

=0. 

Consider the following continuous regularization problem corresponding to (1.1): 

(1.9) minimize IIJu - f112 + oalIuII1. 
uEW 

W 

It is known (see [8]) that this has the unique solution 

Ua = ( + a)- f 

and that 

Xua = (? +a)1f = (a + a)-laf 

In Section 3 we derive estimates of the error 

I|Uac f t = IIjUa,- fI2. 

Although of interest on their own, these lead to estimates of the bias (1.6). For, in 
Section 4, we show that if a tends to 0 in a certain way, then we can bound the 
bias in terms of this error. In Section 5 we determine the asymptotic behavior of 
the variance (1.7). These results are combined, using (1.8), in Theorem 2.1, giving 
an estimate of the expected error (1.5) in regularization. From this, in Corollary 
2.1, we determine the optimal rate of convergence for a. 

It was shown 'by Wahba [21] that if f E H2 and a -O 0 as n -x oc in such a way 
that na 1/2p __ ox, then 

El J~a -XztfI2 < (allfll2 + pa- (2p+l)/2p (1 + o()), - IIIH2 p 

where 4I is a constant. In particular, if a* = cn-2p/(4p+l) for some constant c, then 

EI unar - xtf- - = O(n-2P/(4P+1)-) 

However, the proof required the strong assumption that in various expressions 
the eigenvalues Ai and eigenfunctions Xi of dp can be used to approximate the 
eigenvalues Ani and eigenvectors Oi of the matrix 1 Qn. In this paper, we derive 
the above result rigorously as a special case of Theorem 2.1 with /I = 1 and s = 2. 

Results similar to those derived here were recently and independently obtained 
by Cox [6]. However, his results are based on a different spectral decomposition (see 
p. 15 of [6]) to the one above and are not specifically applied to integral equations. 
Moreover, our method of proof is simpler and more direct. In addition, we find 
lower as well as upper estimates of the bias. 
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For the special case of convolution integral equations with equally spaced data 
dk = f (k/n) + Ek, Rice and Rosenblatt [13] use Fourier series to derive convergence 
rates for a regularized solution. In the case of data smoothing, convergence results 
for the smoothing spline estimate have been obtained by Craven and Wahba [7], 
Utreras Diaz [18], [19], Speckman [15], Cox [4], [5] and Rice and Rosenblatt [12]. 

2. Main Results. In this section we state the major results of this paper and 
draw some conclusions about the optimal regularization parameter. 

For easy reference, we list below our main assumptions. 
Assumptions. 2.1. The errors Ei satisfy EEi = 0 and EeiEj = o26,j. 
2.2. The nonzero eigenvalues Ai of a satisfy 

0 < a1i-2p < A, < a2i-2p for some constants a1 and a2, and p > 1. 

2.3. There exists v, 0 < v < 1 - 1/4p, and a sequence kn -* 0 such that for all 

f,ig E H 

f fg- Ef(xi)g(xi) <knllfI?l, lIIl. 
ni= 1 

In Theorem 2.5 we find sufficient conditions for Assumption 2.3 to hold. 
We will use the following notation. Given two positive functions g(x) and h(x), 

denote g(x) ' h(x) if there exists a constant c such that g(x) < ch(x) for all x. 
Denote g(x) h(x) if h(x) ' g(x) ' h(x). Note that g(x) h(x) is equivalent to 
h(x) g(x). We will also use the asymptotic relation g(x) - h(x) which means, if 
say x -O 0, that g(x) = h(x)(1 + o(1)) where o(1) -k 0 as x -O 0. 

THEOREM 2.1. With Assumptions 2.1, 2.2 and 2.3, let f E H8, where s > 

max{v,,M} and ,u < 2- v- 1/2p. Suppose that a = a((n) -k 0 as n -x oc in such a 
way that 

knaV--1/4p - 0 

and, if p. > vy s > v + 2, 

kna-o/2-M/2-1/4p o-k 0. 

Then, for i < s < ,p + 2, 

(2.1) a2j Iflj + 11_-1/2p cEI xtf 112 as-pIIf 12 + - -81/2p 

and for s > p +2, 

EIIllnak -tztf 1 1 a2 fl22 + -aL-81/2p 

Proof. Combine the estimates in Theorems 3.1, 4.1 and 5.1, using (1.8). 0 

This result is similar to Theorem 3.1 of Cox [6]. However, the latter theorem, 

when applied to integral equations of the first kind, does not immediately give the 

above result because it employs a different spectral decomposition. Furthermore, 

our proof of Theorem 2.1 is simpler and more direct. 

For a given f, define 

s=sup{s: feH} 
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if the sup exists. Later we show by example that the lower bound in (2.1) cannot 
be strengthened to read: for any E > 0 

ag-p+e + ?Ia-8- 1/2p c Eljun -Xtf112 

Nevertheless, we can prove the following 

THEOREM 2.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold and let f E H8, 
where s > max{v, ,u}, ?- < i + 2, and ,u < 2-v-1/2p. For any E > 0, there exists 
a sequence a = a((n) -k 0 as n -koo -such that 

ag-A+e + Ua p- 1/2p < El luna _Xtf 112 

Proof. Combine the estimates in Theorems 4.2 and 5.1, using (1.8). 0 
With an extra assumption on f, the lower bound of Theorem 2.2 is valid for all 

sufficiently small a. 

THEOREM 2.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold and let f E H8, 
where s > max{v, ,u}, 8- < , + 2, and ,u < 2 - v - 1/2p. Assume that, given E > 0, 
there exist L and C > 0 such that for all N 

(2.2) (fA+) > CN 2". 
i=N i 

Suppose that a = a((n) -k 0 as n -k oo in such a way that 

(2.3) kna-v-l/4P -_+ 0 when , < v or when p > v, s- < v + 2, 

and 

(2.4) kna-v/2-p/2-1/4P-e/2 -k 0 when p > v, s > v + 2. 

Then, 

agA+e + Ia-p-1/2p c 
EjjUn _Xtf112 

Proof. Combine the estimates in Theorems 3.3, 4.3 and 5.1, using (1.8). 0 
The condition (2.2) on f is quite general. It is satisfied, for example, if 

Ho 0i )2 ,i- 1-4pe: 
A9 

It can easily be shown that the set of all f E H8 satisfying (2.2) is dense in H,. 
If f satisfies (f, q5i)2 Ai, then S = r - 1/2p and f also satisfies condition (2.2). 

In fact, for this special case the following estimates can be obtained. 

THEOREM 2.4. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and assume 
that f satisfies (f, q$)2 Ai. If, for some E > ax = a(nr) -k 0 as in Theorem 2.3, 
then 

9A ln+ -a-p/2p , 
a- < a < + 2, 

n 

Xtun _ tf 11 2 
U 2 

n1+ op-12p +2 

a2 _2-1/2p 
El Jna n -+ - a 1122 

n 
where s- = r -1/2p. 
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Proof. Combine the estimates in Theorems 3.4, 4.3 and 5.1, using (1.8). 0 
From Theorem 2.1 we have the following 

COROLLARY 2.1. The minimum of the upper bounds in Theorem 2.1 occurs at 
J (2 )2p/(2p8+l) 

J t-) , ,uI < s< ,u + 2, 

2 (a2)2p/(4p+2pp+l) 8?> s+2. 

With a = a*, the upper and lower bounds in Theorem 2.1 have the same order, and 

if a(* - 0 as in Theorem 2.1, then 
2 f 2P(8-/)/(2p++1) 

j , ,ues<8? ,ut+2. Ellun>*_ tfll2 or2 4p/(4p+2pp+l) 

t ( n ) ~~I s > ,u + 2. 

It is clear that to make full use of Corollary 2.1, one should take 8 as large as is 
allowed by f E H8. This gives both a weaker condition on kn and, if 8 < it + 2, a 
better convergence rate for the error. 

Let 
ena = El Una Atfll, 

and suppose that c- = c-(n) minimizes ena. We say that a = a((n) is optimal if 

en, at ends 

COROLLARY 2.2. Suppose f E H8, where s > max{v, tt} and tt < 2-v - 1/2p. 

(a) Assume that as n -k oo, a = a((n) -k 0 as in Theorem 2.1. 
(i) If 8s > t + 2, then a is optimal if and only if 

a (2 )2P/(4p+2pp+l) 

and then (2V 4p/(4p+2pp+l) 

El Una _ Atf 112 r <_ 

(ii) Suppose s < tt+2 and 8- < tt+2. If a is optimal, then for any 0 < E < 8-,u, 

l 52 2p/(2p(9-e:)+1) 

(2.5) a Z 

(b) Suppose s < tt + 2 and 8- < ? + 2, and let O < E < -'-tt. Assume that f 

satisfies condition (2.2) and that as n -k oo, a = a((n) -k 0 as in Theorem 2.3. If 
a is optimal, then 

a (2 )2p/(2p(8+e)+1) 

Thus, from the class {(a: a (or2/n)t, t E R}, the optimal a is 

(2 )2P/(2p8+l) 
n 

Furthermore, for any sufficiently small 6 > 
O0 

/2 2p(9-M)/(2p9+1)+6 / 2) 2p(9-p)/(2p9+1)-6 

(n I) Iln -Xtf II ) 
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(c) Assume that f satisfies (f q i)2 Ar and 1 = r-l/2p > Ms. If, for some 
E > 0O a = a(n) -k 0 as in Theorem 2.3, then 

or2 2p/(2pi+l1) 

-I (j<) , 
s-<p+2, 

(V) 2p/(4p+2pp+1) +2 

is optimal and 

E 2 I 2p(s-A)/2p+l) + 2, 

X~f 11 n I < ,s<,u+21 

El lUna-t 1 4p/(4p+2pp+l) 

n 
~~~~~~> t+ 2. 

If = + 2 and a solves 

1 or2 a (4p+2pp+1)/2p In - - a 
ac n 

then a is optimal. 

Proof. (a)(i) From Theorem 2.1 and Corollary 2.1, it is clear that endt en 

so a* is optimal. Now suppose a is optimal and let a = Cna*. Then 

(C2 + Cn-[p-l/2p)(a)2 e l_ (*)2. ( +n (a* )~ ena,> ena* t (c )( . 

This implies Cn 1, so a a*. 
(a)(ii) Let s = s- -E and suppose that a is optimal. If (2.5) were not true, then 

there would exist a subsequence ni such that, as i -x 00, 

/o2 -2p/(2ps+l) 

0 ac(ni) -)0. 

Substituting a = a(ni) into (2.1) gives 

enta(n,) t Oi en, a*(n,) 

This shows that a is not optimal, a contradiction. 
(b) This follows by a similar argument to that in (a)(ii). 
(c) This follows directly from Theorem 2.4. 0 

Note that from Corollary 2.2(c), if f satisfies (f, qi)2 Ar with r =r-1/2p < 2, 
then the rate of convergence of the optimal a is independent of Pu. Therefore, if one 
has a good estimate of the optimal a for the L2-norm (Mt = 0), then the regularized 
solution should be accurate in all Wa-norms, 0 < Mu < s. This behavior has been 
observed in practice by Wahba [22]. On the other hand, from Corollary 2.2(a)(i), 
for arbitrary f with S > 2 the rate of convergence of the optimal a is dependent on 

pt for Mt satisfying 0 < Mt < 8--2. 
Lastly, in this section we find sufficient conditions for Assumption 2.3 to hold. 

One possible approach to this question is to make a smoothness assumption on the 
vth root of Q(x, y). However, this approach appears to be impractical. 

A practical approach to the verification of Assumption 2.3 is developed by Cox 
in Section 4 of [6]. In our notation it proceeds as follows. 
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Suppose that we can find 1 > 1 such that X: W -k W"2 is bounded. Then for 
f = fu, g = Xv E H = f(W) we have f,g E W1,2, and it is not difficult to 
verify that 

(2.6) f fg- E Ef(xi)g(xi) <dniIfjIw1,2jjgljW1,2, 

where 

dn = sup lx -Fn (x)I, Fn(X)= E 

Now, from interpolation theory (see [17]) it is known that the intermediate spaces 
between L2 and W",2 are 

(L2, W2)2 = W01,2 0 < 0 < 1. 

Here, W01'2 is the Sobolev space of fractional order 01 (which equals the Besov 
space Bo'22). It is also known (see [2, p. 244]) that the intermediate spaces between 
Wo and W are 

(WOW)0,2 = WO, 0 < 0 < 1. 

Therefore, because both X: W __ W"2 and X: Wo -+L2 are bounded, then for 
any k, X: Wk/l __ Wk,2 is bounded, too. Hence, with k = 1, there is a constant c 
such that 

I1fIlWl,2 = IIXUIIW1,2 < c11uI11/1 = cllfllii/, 

and similarly for g. 
Substituting these bounds into (2.6) yields Assumption 2.3 with kn = C2d_ and 

v = 1/1. However, because the assumption requires v < 1- (1/4p), then for integral 
1 we actually need 1 > 2. 

It is not hard to see that if the points xi are uniformly spaced as xi = (i -a)/n, 

o < a < 1, then d, = Q(n-1), and this is the best possible order for dn. In this 
case, with a further assumption on X, we show in Theorem 2.5 that it is possible 
to improve on Cox's estimate. 

First, define the Sobolev space of periodic functions by 

WpMer2 = {u E Wm,2[o, 1]: u(i)(0) = u(i)(1), i = 0. .. , -1} 

with inner product 

(U V)per 1UV + 1 (M) V(m) 

or, equivalently, by 

f ~~~~00A 

Wp~er = uEL2[011]: SE ltj 2 (2rj)2m < OC} 

with inner product 
00 

(Ul V)per UV + E ujvj(2rj)2m. 
J=-00 

Here, itj denotes the jth Fourier coefficient of u. For nonintegral m, the second 
definition defines the periodic Sobolev space of fractional order m. 



118 MARK A. LUKAS 

THEOREM 2.5. If xi = (i-a)/n, i = 1 ... ,n O< a <1 and peK: W k r 

,3 > 1/2, is bounded, then Assumption 2.3 holds with v = -y//3 and kn ' n-1 for 
any 1/2 < / <? ,. 

Proof. Denote 

D(f) f-- f (xi). n._ 

If f E H, then f E Wg3]2 and by expanding f in a Fourier series it is easy to show 

that 

D(f) =-E fn-2ria 

j#O 

Then, for any 1/2 < -y <? , 

ID(f)I = E fne-2xiaj(jn)'(jn)-" 
j00 

F I ~~1/2 11/2 
[ El j n 12 (jn)2#O (jn)#-2- 
Ljoo i jo 

- 11 #fIIW-j2cj n-a, 

where 

C1 = Cl('>) = j-2] 

Because Wpr2 -v > 1/2, is a Banach algebra (see [3]), we also have for f, g E H C 
wa2 

per~ ~ ~ ~ ~ ~~~~~~ e 

Now, since %: W --W r2 and X: Wo -L2 are bounded, interpolation theory 

implies that X: WYI/_ Wz7r2 is bounded. Therefore, for some constant C3, 

I If I W -12 <- C31 If I II,31 

and similarly for g. Substituting these bounds into the bound on ID(fg)l proves 
the result. 0 

3. Estimates of the Continuous Regularization Error. In this section we 

derive upper and lower estimates of the error II u,> - XtfII,,, where u, solves the 

continuous regularization problem (1.9). 

We will see that estimates in this and later sections depend on the behavior of 

the sum 
oo0 

A2-z 
S(a) = E ( 

j=1 (i+a2 

With Assumption 2.2 on the eigenvalues Ai, this behavior can be determined as 

follows. For the proof, see Lemma 2.1 of [6]. 
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LEMMA 3.1. If z < 2 - 1/2p then S(a) is finite for any a > 0. In this case, 
as a -c 0, 

-z-1/2p if - 1/2p < z < 2- 1/2p, 

S(a) T(a) = l, 
if z =-1/2p, 

1, ~~if z < -1/2p. 
In fact, as a - 0, 

cl (Z) < S (t) (T(t) ) -' < C2 (Z), 

where 

cl(z) = (ai/a2)2-za1/2PI(z)(1 + o(l)), 

C2(Z) = (a2/ai )2-za1/2P1(z)(1 + o(1)) 

and ?? 2pz 

(l+2p)2dx if-1/2p<z<2-1/2p, 
<1 if z = -1/2p. 

If z < -1/2p, then S(a) E Z1 A7 Wc(z). 

Suppose that f E H8 for some s > 0. It is possible, of course, that f belongs to 
H8 for all s > 0. This is the case, for example, if f is a finite linear combination of 

4i, i = 1, 2,..., or if (f, q$)2 decreases exponentially. If this is not the case, then 
s < oo. Note that f may or may not belong to Hg. If, for example, 

- i(lni)r i > 2, 

then f E Hg for r> 1 and f 0 Hs for r < 1. 

THEOREM 3. 1. Under Assumption 2.2, if f E H, then 

(o(l), 8 =/, 

a2lifII2 
I 
IUa _ , t'fI12 a 98-iPfI2, < s < u+ 2, 

a2If 112, s > , + 2. 

In fact, if s > , + 2, then 

luc, _- X'fl 11 a2 I If 112 

Proof. We have 

IIXUa - fII2 = IId,('4 + a)-lf - fII2 = a2IIQ( + a<)-lfII2 

__ _ _ __) 
2 1_ _ (f _I_) 

2 

(3.1) i (>Ai + a)2 A i=1 A (A + a)2 

(3.1) (~~~/~ ____ ___ ___ 

<l--x a2 
8 

8-A (fj , g)2 ('3i)4p+2pp-2ps 

- aJ 1 (1 + (3i)2P)2 

where ,/ = (a/a ) 1/2p. 

Clearly, from (3.1), I IXUa- f 1 
2 >- a2 I I f IfI 2 

If s = ,u, then clearly 

decreasesto0a a de s oA 0i + a. 

decreases to O as ae decreases to 0. 
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If ,u < s ? ,u + 2, then it is not hard to verify that the function 

(/3t)4p+2p/-2ps 
qit) = (1+ (/3t)2P)2 X t > 

has maximum value < 1. Thus, 

I Iua - fli?, < (a2/aj)8a8cI-a IIfII12 

Ifs ?>u+2, then from (3.1) 

IIXU,> _ f 112 < ca2Ilf 112 IV~uafII~ a2HfH+2 

and furthermore 
ll~~u 

IL 
- PH~c~ll+2 ? 

A result similar to Theorem 3.1, under different assumptions, can be found in 
[11]. Next we have the following lower bounds. 

THEOREM 3.2. Under Assumption 2.2, 

a ct-AF(t)j ,u < s < ,u + 2 (also 8- , if f E H^,), 
u - U a cB (a), S 1=,u +2, f 0H 

a c +21 s > i + 2 (also s = u + 2 if f E Ha), 

where F(a) satisfies: For any c > 0 and E > 0, F(a) > ca6 for an infinite sequence 
of a -O 0. Also here, B(a) T oo as a 0 and satisfies B(a) < a-IIfII1+2-e. 

Proof. Let /S - (a/a2)l/2P and N = [1//i] + 1. Then, for any E > 0, 

1 IIU f XfI12 = a2Z (f (+ > 4 1 A 

> 1 ( al1\ ) c/2 9-+/2 
2N-1 (f qj)2 p < J. 

4 a9 i2+E/2 A9+e:/2 p<1 4 \~~9p~~2 / i=N i 

Now we claim that for any C and 6 > 0, 

2N- 1 (4.)2>CN 
G(N)-E S ?+ /2 > CN 

i=N i 

for infinitely many N. If not, then there exists C > 0 and 6 > 0 such that for all 

but finitely many N, G(N) < CN-6. Hence, there exists D such that for all N, 
G(N) < DN-6. Then 

2K 2 K K 

Z,(+e2< 5, G(2k) <D S 2 

i~l i k=O k=O 

Since the series on the right converges, while the series on the left diverges, we have 

the desired contradiction. 

Putting 6 = pE and F(a) = ae'/2G(N) gives the first bound. Note that if 

f 0 Hg, then we need not have included the exponent E/2 in (3.2). Instead, simply 

put 6 = 2pe. 

In the case s = ,u + 2 and f 0 Hg, 

I IXU' - fI12 = a2B(a), 
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where clearly 

B() (Ai E ( (+ a 1 X as a 10 

and 

B(at) < aE-6 I f 112- 

The third bound is obvious from Theorem 3.1. 0 

Theorem 3.2 cannot be strengthened to read: If ,u < S < ,u + 2, then for any 

E > 0 

(3.3) I1Iua - f 18 >- a 

for all sufficiently small a. To see this, let fi = (a/a,)1/2P and 

t) ('3t)4p+2pp-2p9 +2 
gfl() -(1 + (ft)2P)2 

Then, as in the proof of Theorem 3.1, 
00 

IIUC - fII1 < (a2/a1)8g-a8g-I (f q$') g)(i)- 
i=1 i 

Now define a function f as follows: Let k, be an increasing sequence of positive 

integers such that J = {j = 0, 1, 2... : j 0 [k1 - 1, ki + 1], 1 = 1, 2,... } is infinite, 

and suppose 

(f I qi)2 J1 i=223, jEJ, 
(3.4) AM 10, otherwise. 

For I = 1, 2,..., let k = kl and 3 = 2-2k . Then, with a = 4p + 2p[L-2pg > O and 
b = 2ps- 2ppt > 0, it is not difficult to show that 

'IO??f 0,) 2 k-2 00 

- (fX' g0 (i) < E g (2 2) + E gf(221) 
i=1 i j=O j=k+2 

1 __ _ __ _ 

< _'3a 
+ 1 ,b (aC), 

a(ln 2)2 b(ln 2)2 

where c = min{a/4p, b/2p}. Thus, for this example, (3.3) does not hold. 

With an extra assumption on f, (3.3) does hold. 

THEOREM 3.3. Under Assumption 2.2, if ,u < s < , + 2 and f satisfies condi- 

tion (2.2), then for all sufficiently small a, 

ua -U _ tf 1 12 >. C?-p+e 

Proof. If N = [(a/a2)-1/2P] + 1, then as in the proof of Theorem 3.2, 

| IX-UC _ f 1 12 = (X2 
'I 

(, f Ij) 
2 

I 

LN (f qt) )2 
>- aeg-+c/2 I: (f, q0) ~~ >8~~A+e:-/2' 

i=N i 

and the result follows. 0 
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In Theorems 3.1, 3.2 and 3.3, the bounds cannot in general be improved to have 
the exponent of a equal to s - ,u. To see this for the lower bound, in the case 
f E Hg, consider a function f such that 

(f, q)2 = 1 
Mi ilni' 

It can be shown that for this example 

t (ln-) < < + 2 
II Ua _ f 112 

a 

a In 8 + 2. 

In the case f E Hg, a function f such that 

- i(ln i)2' i > 2, 

gives 

ag-p In < 8- < Ms< + 2, 

1~~~~~~ (ln-) , s1 2 au 

For the upper bound, consider a function f with 

Then, 
`/ I8-8n -, p < s < M + 2, 

f a2 n-)2, s = P +2. 

Exact error estimates can be obtained in the following special case. 

THEOREM 3.4. Under Assumption 2.2, if f satisfies (f,q0$)2 Ar, r > ,u + 
1/2p, then s- = r - 1/2p and 

a8-,1 < s- < P + 2, 

|UC -Xtf 112 
a c2 ln(l/av), s u+2 12 

a > ,U + 2. 

Proof. The result follows immediately from (3.1) and Lemma 3.1. 0 

4. Estimates of the Bias. We begin this section by expressing %un,> in a 
form suitable for estimation. Define an operator n by 

'n f (X) = -E Q(xX, Xi) f (Xi). 
i= 1 

LEMMA 4.1. For all n and a > 0O 

fun, = n(n + a)-ld = (e + a)<-1ldd, 

where d(x) is any interpolant of d. Also, 

EXUna = n(n + a) f = (dn + a<) nf 
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Proof. For any g E H, 

71n (dn 9 9) H-= E 9 (Xi ) (Q ( , Xi ), 9 (- )) H 
n 

= g2(Xi) > 0. 

Therefore, d'n: H H is a positive operator. If (n + a) f = 0 for any function f, 
then 

(n(dVnf)4nf)H + a(V~nf4nf)H = 0. 

This implies, from above with g = dnf, that 4nf = O. Hence, af = 0 and so 
f = 0. Thus, n + a has an inverse. 

To see that XUn, = (4n + a)-l+nd, note that from (1.3), 

n 

(n + a)JUna (X) = (n + a) E Q(xI Xj)(Qn + a7nI)-dj 
j=1 

=- Q(x, xi)Q(xi, x3)(Qn + a71I)1d~ 

n 

+ at E Q(x, Xi)(QX) (Qn + + l1 d 
i=1 

Q(XI xi) (Qn + atnI) (Qn + anI) di 

=nd. 

Then also %Un e = (en + a) - 1 d, since 

(en + at)-'(en + a - a)d = d -a(e~n + av)-ld 

= (en + a -a)(~n + a)-ld. 

The second part of the result follows by the linearity of expectation E. 0 

It will be shown that under certain assumptions the bias I IEXUna - fI I can 
be bounded in terms of the continuous error I JXu, -f JIM, which was estimated in 
Section 3. We will use the fact that 

I IIEXuna - fIM - IIXUc-f fI II < IIEXUna -XUa I I 

and estimate the right-hand side. 
By Lemma 4.1, 

EXUn, - fU, = (n + a)*nf - (e + a)le f 

= (n + a)<lenf - (e + a)1lnf 

+ (e + aE)-lenf - ( + at)-lef 
= (e + a)-' (e - en)(n + a)l -nf (e + a)-1' - - )f 

= (ds + a)-1 (- n)(EXuna - ). 
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This working shows that (IP + a)1Q(' - ed'n): H -- H, for if g E H, let f = 

(1/a) (an + a)g. Then 

( + a)nW - 4 t)9 = (I + a<) 1 - n)(en + a) af 

=( + CO) 
- - gn)(f - EX Una) 

- Xu- EXuna 

and both fua and EXUnna belong in H. 
Now from above, 

EXUna - f = EXuna -%fUc + fUa - f 
- (e + c>)-1Q ( - dn)(EX%'una -f) + fUc - f 

and hence, 

[I - (I + a)-1(d - dn)](EXuna - f) = Ua - f. 

Note that I - (dP + a)-1 (e - en) has an inverse, since 

I - (I + a-< - en) = (I + a<)- + a - e +n) 

= (e+ a)-1 ( + a) 

and this has inverse (en + a)1 (d + a). Hence, if the sum converges in H, for 
some M, then 

EXUna -f = [I - f + +)- - e -In)] -1 (Uao- f) 

= XU, -f + [(+ at)'- (I-En)]l (X~a - f) 
1=1 

and so 
00 

(4.1) EXuna, -Jfu =Z[( + a)1 W( - n)]'(7Ua f) 
1=1 

We need to show that this is small in the ,u-norm. Intuitively, the difficulty lies 
in the fact that the parameters a and n have opposing effects. Clearly, for %ua to 

converge to f, we require that a -k 0 as n -- oo. Now as n -- oo, ' - En in some 
sense approaches 0. However, as a -O 0, (e + a)-1 becomes unbounded. Thus, in 
order that (e + a)1 (e - en) approach 0, we can expect that a must tend to 0 at 

some specific rate. 

LEMMA 4.2. If ,u < 2-v - 1/2p, then for all g E H, 

11(Q + a)<1e - egn)gIlp < V/F2(v + M)knI11Iva- 

Proof. Since H is dense in H, it suffices to verify the inequality for all g E H. 
By definition, 

II|( + a)-Q~' - ed' )gII2 = E (QU' + a)1e~ (-dn)9 qj)2 

2 n ((-n)9 qi)2 

i=1 (Ai+a)2A 
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Now, 

((@- n)9, qi) = Ai (J i g- (xj)Oi (j) 

and hence by Assumption (2.3), 

((@'- dn)gl Oi) I < Aikn I 191 IL, I 10i I IL, 

= jIgl L (A,) -l2 = Al-v/2 knI 9I ,, 

Therefore, 
oo 2-IJ-p 

I I (d' + a)- (@' - it)9 < kn | , 

By Lemma (3.1), since 0 < v + ,u < 2 - 1/2p, 

oo A2-IJ-p 
i 

(A +) < C2 (v + ,(z)at-v-11- /2p Z(Ai+ a)2- 

This proves the lemma. El 

LEMMA 4.3. Suppose v < 1- 1/4p and ,u < 2-v - 1/2p. If a = a(n) - 0 
and kna--1/4P -+ 0 as n x-+ o, then for all n sufficiently large, the resolvent 

00 

Rn= Z + a)-1 (' - dn)l 
1=1 

is a bounded operator H. -+ H,,, and for all g E Hz, 

IIRfltg III < t'2(v + M)kna-(v+z+1/2p)/2 1g91118 

Proof. If the sum converges, then for any g E H>, 
00 

IIRnaflgII < , II[(@ + a<1(@- 
1=1 

Since v < 1 - 1/4p, we can let ,u = v in Lemma 4.2 to obtain 

II(@' + a)-1(d- dn)gl)II < \(2v)knIgI~v 
Hence, by induction, 

II[(d' + a)'(@ -@n)] I 
< V2(i' + I)IknaI (v+p+12p)12gIv (V(2v)kna--1/4p)1-1. 

Since knaC-L-l/4P -+ 0, we have 

VH(2v)k kn a 1/4p < 1/2 

for all n sufficiently large. Therefore, for such n, 
00 

A( )k -~(v8+j+112p)12IlgIIl(j t(vka-v- 1/4p)- -\/c-2(v + y)k -\ - 2~n 

-\/= (v + y)k a-(v+p+112p)12IlgII (1 + o(1)). 

Since by definition /c(v + ,u) = V'(v + ,u)(1 + o(1)), the lemma follows. O 
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Applying Lemma 4.3 to (4.1) gives 

I IIEXuna - fII - IIXUa - fII1I 
(4.2) < I | E9XUna- XUat III, 

< VH(v + P)kna-(,+I+1/2P)/2 IIua - fI I, 

By Theorem 3.1, if f e H8, s > max{v, M}, then the right-hand side e(a) of (4.2) 
satisfies 

( o(1), 8 =v, 
e(a) ' kna- '-l/4Pa v/2-//2 a8/2-v1/2If18 v < s < v + 2, 

aIfI (Lfl+2, S > V +2. 
By examining the exponents, if IL < v then 

e(a) C vn-lo-1/4p as/24s/2, v < 8 < ,tl+2, 
e~a __- kn~tL' 

a, 8?>11+2, 

and if IL > v then 

( knal-'J-1/4pas/2-,//2 ,< s < v + 2, 

e(a) kna-v/2-4/2-1/4Pa,/2-4s/2 v + 2 < s < ,u + 2, 
t knal-v/2-p/2-1/4Pa8 > ,u + 2. 

Hence, from (4.2), if as n -+ 00 

(4.3) kna-'-l/4P__O wheniu<vorwhenu>v, ,u<s<v+2 

and 

(4.4) knav-/2-'/2-l/4p + 0 when p> v, s> v+ 2, 

then 

(4.5) IIEXUnQ -fIIj -jIIUa _ fII1 | o(a8/2-//2), 8<? +2, 
o(a), 8?11+2. 

By squaring (4.5) and using Theorem 3.1, we have the following estimate of the 
bias squared. 

THEOREM 4.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f e H8 
where s > max{v,,u} and , < 2-v - 1/2p. If a = a(n) -+ as n -+ ox so that 
(4.3) and (4.4) hold, then 

I IE~ne _X~f11 _ lue __t 12 o(a"'~), 8?<11+ 2, |IIEunQ -'fII, -IIUQ-t"fII { 
o(a2), 8?>u+2. 

From above, if in fact a satisfies 

kna-l- 1/4P a d/2I d > 0, 

then the error estimate o(a8-4) in the case s < ,u + 2, ,u < v can be strengthened 
to O(a8-p+d). Then, for the function f defined by (3.4), 

I I Euna,_XtQ f 112 < O(a 89-+e) 

where e = mind, 1 + ,u/2 - -/2, s - Ml}. This shows that for the case s- < ,u + 2 it 
is in general impossible to bound the bias as follows: For any e > 0, 

IIgEunQ , Xtf2 112 

Nevertheless we can prove the following. 
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THEOREM 4.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f E 

H, where s > max{v,,u}, ? < , + 2 and , < 2-v-1/2p. For any E > O there 
exists a sequence a = a(n) -+ 0 as n x-+ 0 such that 

I I EuncXtf 112 > 

Proof. By Theorems 3.1 and 3.2, for any E > 0 there exists an infinite sequence 
of a -+ 0 such that 

(4.6) L~'Q XUc- f 1 all l-v-2E S < min{v, ,u} + 2, 

I||u,> -O f 11 
at o,+2-9-E min~v, MI} + 2 < 8- < ,u + 2. 

Substituting these inequalities into (4.2) yields 

(4.7) | ||EXUna - f 111i- jXua - f 11,1 < ajjXu, - f 111 

where 

{ knal--/4P-e s < min{v, ,} + 2, 
a 

kal-v/2-8/2-l/4P-E/2 min{v, t} + 2 < S < M + 2. 

Now the sequence of a -+ 0 can be chosen to make a = o(1). For, if the sequence 
converges to 0 too quickly, then by simply repeating an appropriate number of 
terms, a new sequence can be constructed which does satisfy the constraints. The 
result follows from (4.7) and Theorem 3.2. E 

THEOREM 4.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and let f E 
H8, where s > max{v, ,} and ,t < 2 - v - 1/2p. If f satisfies condition (2.2) and 
a = a(n) -- 0 as n -x oc so that (2.3) and (2.4) hold, then 

I IEun Xtf 11 = I Iuc -Xtf IIII(1 + o(l)). 

Proof. By Theorems 3.1 and 3.3, the bounds (4.6) and hence (4.7) are valid for 
all sufficiently small a. This proves the result if s < ,u + 2. If s > ,u + 2, the result 

follows from Theorems 4.1 and 3.1. 0 

5. Estimate of the Variance. Although not essential, the first result is of 
interest here. 

LEMMA 5.1. Let 
=1 

fX (Y) = (- n + a) 1Q(x, y) 
n 

and 

go (y) = 1(dn + a) Q (y, x), 

where (dn + a)-1 acts on Q as a function of its first variable. Then for each 
k = 112, ... n, 

fxk (Y) Xk (Y) = YUna (y). 

Here, u k is the regularized solution with data 

dk = (0,.. .,0,1,O, ...0) 

where the 1 is in the kth place. 
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Proof. By Lemma 4.1, 

XU k 
x(y)= (@n + ) @nd 

= (@n + a)-1 Q(y, xi)d& 

= n(@n + a) <lQ(Y, Xk) = 9Xk (Y) 

Also, from Lemma 4.1, 
n 

un(Y) = Q(Xi, Y) (Qn + anI) &d 
i=l 
n 

= (Qn + anI) jQ(xi, y) 
i=l 

= -(@n + a)1Q(xk, Y) = fXk (Y). n 

Now we derive the following expression for the variance (1.7). 

LEMMA 5.2. We have 
n 

El IIun. - ElUnI 112 = 2 E IIFkII2 

k=1 

where Fk = fxk = 9Xk = XUnc from Lemma 5.1. 

Proof. Using Lemma 4.1 and Assumption 2.1 about the errors Ei = -f(xi), 
we get 

El I/un - Elu/no 1 12 
= Ell(d'n + a)-1d (d - f)II2 

n ~~~~2 
= E (@n + a)-1 Q(. xi)i 

n~~ 

k=1 

Fk1 (Y)n = + (Y) =-@ +)1QQXX 

t wl Xsai)Q( n be n + apo aQ(., Eby E(E)Q 

n 

=a2ZIFkIIA . E0 
k=1 

Of the three possible forms of Fk, we will use 

1 
Fk(y) = g~k(Y) = (e a)QyX) 

It will be shown that (e'n+a)-1Q(y, Xk) can be approximated by (e'+a)-1Q(y, Xk), 

and this will lead to an estimate of the variance. 
Corresponding to Lemma 5.1, it is not hard to show that for all x, y E [0,1], 

(e + a)-lQ(x, y) = (@ + a)-'Q(y, x), 

where (@p + a)-1 acts on Q as a function of its first variable. Note also that 

(@p + a)-QQ(y, Xk) can be thought of as %u, (y) = (@ + a)-1ef(y) with data 
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f(x) = &(x-Xk), a Dirac delta "function". In the case of data smoothing with W = 

Wmi2 [0, 1], (@ + a)-1Q(x, y) is the Green's function of a certain linear differential 
operator. This fact was exploited by Cox [4]. 

Proceeding as in Section 4, 

(d + a)-Q(y, Xk)-(@ + a<) Q(y, Xk) 

-( + a)- (d - dn) (n + a) 'Q(y, Xk) 

and hence 

[ (@ + a) (@- n)]( n + a) Q(Y,Xk) = ( + a)1Q(yx k) 

Since 

(d'+ a)Q(yXk) = a - +a)-'Q(y xk) a 

- 1Q Xk)--!(@ + a)1 Q(y' Xk), a a 

(@' + a) Q(y, Xk) belongs to H1 and hence to H,. Then by Lemma 4.3, 

(@n + a<)1Q(y' Xk) - (@ + a<)1Q(y, Xk) = Rna(@ + a)Y1Q(y, Xk) 

and 

(5.1) 1(dn + a)-Q(y, Xk) - ( + a) Q(yX k) I Ip 

?< V/'(v + p)kna(,+p+1/2p)/2II(dP + af)-Q(y, Xk)I| | 

From the expansion of Q(x, y) it is easy to verify that 

(@ + a)< 1Q(y, Xk) = E (Ai a) qi(Y)qOi(Xk), 

where the sum converges uniformly for any a > 0. Therefore, 

(5.2) 1 (+a<1QyXk)II1 = 
Ai+Ia ) A, 

By Assumption 2.3, 

(5.3) nE n$ (xk)-f qi z)d = - _ 
k=1k= 

<knIbil112 = knAi-. 

Hence, combining (5.2) and (5.3), we get 

- E 11(e + a)'Q(y, Xk)Ilg 1 
1 

(24 

(5.4) k=1 i=1 

< kn> (Ai +)2ATv 8 
i=1 

Let 

Ak = II(en +aY) Q(yXk)llu, Bk = II(e +.a) Q(y,Xk) II, 
and 

Ck = V62(v + I)kna (v+/+1/2p)/2II(@ + a)1 Q(y, Xk) I I 
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Using (5.1), we have 

n n n n 

E A - E B2 < E Ak - Bk2 + 2 E BkIAk - BkI 
k=1 k=1 k=1 k=1 

n n 

(5.5) 
< 

EZ Ck+ 2 E BkCk 
k=1 k=1 

n /n 1/2 n 1/2 

< 1: Ck2 +2 tEB) 
2 2k 

k=l k=l k=l 

Now from (5.4) and Lemma 3.1, since ,u < 2 - 1/2p and v + ,u < 2 - 1/2p, we 
have 

(5.6) ?ZE B2 > Cl (,U)a&' 1/2p - knC2(V + P)a- -p 12p 

k= 1 

= Ci (p)a-- 1/2p (1- 

where 

e = (c2(v + ,u)/cl(t))kna-' = o(1), 

since kna-"-l/4P -+ 0. Also, from (5.4) with , = v, and from Lemma 3.1, since 
v < 1 - 1/4p, we have 

i nn 

(57) - Z Ck = C2(v + pt)ka- (v++l/2P) ?E 11(Z ' + a)-Q(y, Xk) II 
(5.7) nk=1 nk=1 

< c2(v)c2(v + p)k 2a-2v-p-l/P(l + 6) 

where 

6 = (C2(2v)/c2(v))kna-r = o(1), 

since kna-"-l/4P _+ 0. 

Substituting (5.6) and (5.7), we find that 

n n 

E Ck E k <(C2(V)C2( + p)lcl(p))kn -2 0/2p 1) 
k= 1 k=1 

since kna!-'-l/4P __ 0. Using this in (5.5) yields 

n n 

(5.8) EA2 = Z: Bk (1 + o(1)). 
k=1 k=1 

From (5.4) and Lemma 3.1, we have 

(5.9) c1(p)a&'`1/2p < - ZB2 < C2(p)a-- 1/2p 
k=1 

since by definition, ci (,u) = ci (,u) (1 + o(1)) and c2 (,u) = G2 (u) (1 + o(1)) 

Combining (5.8), (5.9) and Lemma 5.2, we have the following estimate of the 
variance. 
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THEOREM 5.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold and ,t < 2-v-1/2p. 
If a = a(n) -+ 0 and knce-'-1/4P -+ 0 as n -+ oX, then 

C1(Y) -a2 - 1/2p < El un 12 < C2 (Y) 
2 

a 
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